Какую систему тел можно считать колебательной. Колебательное движение. Преобразование энергии при гармонических колебаниях

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, крыльев насекомых во время полета и многих других тел.

В движении этих тел можно найти много различий. Например, качели движутся криволинейно, а игла швейной машины - прямолинейно; маятник часов колеблется с большим размахом, чем крылья стрекозы. За одно и то же время одни тела могут совершать большее число колебаний, чем другие.
Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Промежуток времени, через который движение повторяется, называется периодом колебаний.

Поэтому говорят, что колебательное движение периодично.

В движении колеблющихся тел кроме периодичности есть ещё одна общая черта.

Обрати внимание!

За промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями.

Под действием сил, возвращающих тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эти силы возникают благодаря совершению над телом некоторой работы (растяжению пружины, поднятию на высоту и т.п.), что приводит к сообщению телу некоторого запаса энергии. За счёт этой энергии и происходят колебания.

Пример:

Чтобы заставить качели совершать колебательные движения, нужно сначала вывести их из положения равновесия, оттолкнувшись ногами, либо сделать это руками.

Колебания, происходящие благодаря только начальному запасу энергии колеблющегося тела при отсутствии внешних воздействий на него, называются свободными колебаниями.

Пример:

Примером свободных колебаний тела являются колебания груза, подвешенного на пружине. Первоначально выведенный из равновесия внешними силами груз в дальнейшем будет колебаться только за счет внутренних сил системы «груз-пружина» - силы тяжести и силы упругости.

Условия возникновения свободных колебаний в системе:

а) система должна находиться в положении устойчивого равновесия: при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия - возвращающая сила;
б) наличие у системы избыточной механической энергии по сравнению с ее энергией в положении равновесия;
в) избыточная энергия, полученная системой при смещении ее из положения равновесия, не должна быть полностью израсходована на преодоления сил трения при возвращении в положение равновесия, т.е. силы трения в системе должны быть достаточно малы.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы.

Системы тел, которые способны совершать свободные колебания, называются колебательными системами.

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Пример:

В случае колебаний шарика на нити шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Всякое колебательное движение есгь движение, происходящее с ускорением, поэтому на колеблющиеся тела должны действовать силы, сообщающие им эти ускорения. В частности, если точечное тело массой совершает гармоническое колебание, то, согласно второму закону механики, на него должна действовать сила, равная

где Направление силы совпадает с направлением ускорения, а вектор ускорения при гармонических колебаниях, согласно формуле (4.5), всегда направлен к положению равновесия. Таким образом, для того чтобы тело совершало гармоническое колебательное движение, на него должна действовать сила, всегда направленная к положению равновесия, а по величине - прямо пропорциональная смещению от этого положения. При исследовании колебательных систем можно легко найти коэффициент пропорциональности между действующей на тело силой и смещением х этого тела от положения равновесия; тогда, зная еще и массу колеблющегося тела, можно вычислить частоту и период колебания; из соотношения следует:

Силы, всегда направленные к положению равновесия, называются возвращающими. Рассмотрим несколько примеров:

1. Колебательная система, состоящая из массы и пружины (см. рис. 1.36, б). Возвращающей силой является упругая сила, действующая на тело со стороны деформированной пружины. Эта сила при малых деформациях прямо пропорциональна изменению длины пружины Приложив к пружине внешние силы и измерив вызванные ими удлинения

(или сжатия) пружины, можно найти коэффициент упругости пружины и по формуле (4.10) рассчитать частоту колебаний тел, прикрепленных к концам пружины. При этом колебания будут гармоническими и со постоянны) только в том случае, если на колеблющееся, тело не действуют никакие другие силы, кроме возвращающей причем коэффициент от которого, согласно формуле (4.10), зависит частота колебаний, должен все время сохраняться постоянным. В частности, если температура пружины изменяется, то а следовательно, и частота колебаний также изменяются; колебания не будут гармоническими.

2. Система, совершающая крутильные (поворотные) колебания (см. рис. 1.38, б). При крутильных колебаниях на тело действует возвращающий момент, приостанавливающий отклонение тела от состояния равновесия и затем сообщающий ему обратное движение. Возвращающий момент возникает при деформации (кручении) пружины (или стержня), к которой прикреплено колеблющееся тело. При малых углах отклонения этот момент прямо пропорционален углу отклонения.

Если крутильные колебания гармонические, т. е.

то угловая скорость и угловое ускорение при повороте также изменяются по гармоническому закону:

Возвращающий момент найдем как произведение углового ускорения на момент инерции колеблющегося тела:

где постоянная величина (если момент инерции тела при колебаниях не изменяется). Этот коэффициент можно найти, приложив к пружине (или стержню) внешние скручивающие моменты и измеряя углы скручивания а:

тогда частота и период колебаний определяются по формулам:

Согласно выражению (4.13), при гармонических крутильных колебаниях возвращающий момент должен быть точно пропорционален углу отклонения; если эта пропорциональность не соблюдается (например, при очень больших углах поворота), то колебания не будут гармоническими (хотя при отсутствии трения будут незатухающими).

3. Физический маятник (рис. 1.40). Возвращающим моментом является момент силы тяжести, имеющий знак,

противоположный знаку угла отклонения а и равный

где расстояние от точки опоры до центра тяжести тела.

При малых углах отклонения (угол а - в радианах); тогда возвращающий момент

пропорционален углу отклонения и колебания маятника будут гармоническими.

Сравнивая с выражением (4.13), получим следовательно,

При больших углах отклонения, а также при деформации тела во время колебаний (переменные колебания оказываются негармоническими, хотя они при отсутствии или компенсации трения могут быть незатухающими.

4. Математический маятник представляет собой точечное тело массой подвешенное к невесомой и нерастяжимой нити длиной I (рис. 1.41). Возвращающей силой является проекция силы тяжести на направление движения тела; имеем:

В радианах). Замечаем, что условие пропорциональности между возвращающей силой и смещением от положения равновесия х здесь также не соблюдается, поэтому колебания этого маятника не являются гармоническими. Но если углы а малы, так что то

так как эта сила всегда направлена к положению равновесия и поэтому имеет знак, противоположный знаку то

В этом случае колебания можно полагать гармоническими; сравнивая с выражением (4.9), получаем:

т. е. частота и период колебаний не зависят от массы колеблющегося тела, а определяются только длиной нити и ускорением силы тяжести (колебаниями маятников пользуются для определения Для постоянства коэффициента а следовательно, и частоты колебаний со необходимо постоянство Между тем сила действующая вдоль нити, может вызвать ее удлинение, которое будет минимальным в крайних положениях и максимальным при прохождении тела через точку О. Поэтому, чтобы колебания маятника были гармоническими, необходимо кроме малости углов отклонения дополнительно еще и условие нерастяжимости нити.

Из этих примеров видно, что при малых амплитудах частота (или период) колебаний определяется только свойствами системы. Однако при больших отклонениях от положения равновесия линейная зависимость возвращающей силы от смещения а также возрастающего момента от угла поворота строго не соблюдается и частота колебаний зависит в некоторой степени также и от амплитуды колебаний или

Колебательное движение + §25, 26, Упр 23.

Колебания являются очень распространенным видом движения. Колебательные движения вы наверняка хоть раз в жизни видели в качающемся маятнике часов или ветки деревьев на ветру. Скорее всего, вы хотя бы однажды дергали за струны гитары и видели, как они вибрируют. Очевидно, что даже если вы не видели воочию, то хотя бы представляете себе, как двигается игла в швейной машинке или поршень в двигателе.

Во всех перечисленных случаях мы имеем какое-либо тело, периодически совершающее повторяющиеся движения. Вот именно такие движения и называются в физике колебаниями или колебательными движениями. Колебания встречаются в нашей жизни очень и очень часто.

Звук – это колебания плотности и давления воздуха, радиоволны – периодические изменения напряженностей электрического и магнитного полей, видимый свет – тоже электромагнитные колебания, только с несколько иными длиной волны и частотой.
Землетрясения
– колебания почвы, приливы и отливы – изменение уровня морей и океанов, вызываемое притяжением Луны и достигающее в некоторых местностях 18 метров, биение пульса – периодические сокращения сердечной мышцы человека и т.д.
Смена бодрствования и сна, труда и отдыха, зимы и лета... Даже наше каждодневное хождение на работу и возвращение домой попадает под определение колебаний, которые трактуются как процессы, точно или приближенно повторяющиеся через равные промежутки времени.

Колебания бывают механические, электромагнитные, химические, термодинамические и различные другие. Несмотря на такое разнообразие, все они имеют между собой много общего и поэтому описываются одними и теми же уравнениями.

Главная общая характеристика периодически повторяющиеся движения - эти движения повторяются через равные промежутки времени, называющиеся периодом колебания.

Подведем итоги: механические колебания – это движения тела, повторяющиеся точно или приблизительно через одинаковые промежутки времени.

Специальный раздел физики – теория колебаний – занимается изучением закономерностей этих явлений. Знать их необходимо судо- и самолетостроителям, специалистам промышленности и транспорта, создателям радиотехнической и акустической аппаратуры.


В процессе совершения колебаний тело все время стремится к положению равновесия. Колебания и возникают по причине того, что кто-то или что-то отклонили данное тело от его положения равновесия, придав, таким образом, телу энергию, которая и обусловливает его дальнейшие колебания.

Колебания, которые происходят только вследствие этой изначальной энергии, называют свободными колебаниями. Это означает, что им не требуется постоянная помощь со стороны для поддержания колебательного движения.

Большинство колебаний в реальности жизни происходят с постепенным затуханием, вследствие сил трения, сопротивления воздуха и так далее. Поэтому часто свободными колебаниями называют такие колебания, постепенными затуханиями которых на время наблюдений можно пренебречь.

При этом все тела, связанные и непосредственно участвующие в колебаниях, называют в совокупности колебательной системой . В общем случае обычно говорят, что колебательная система – это система, в которой могут существовать колебания.

В частности, если колеблется на нити свободно подвешенное тело, то в колебательную систему войдет само тело, подвес, то к чему крепится подвес и Земля с ее притяжением, которое и заставляет тело колебаться, постоянно возвращая в состояние покоя.

Такое тело является маятником. В физике различают несколько типов маятников нитяные, пружинные и некоторые другие. Все системы, в которых колеблющееся тело или его подвес можно условно представить в виде нити, являются нитяными. Если этот шарик сместить в сторону от положения равновесия и отпустить, то он начнет колебаться , т. е. совершать повторяющиеся движения, периодически проходя через положение равновесия.

Ну а пружинные маятники, как легко догадаться, состоят из тела и некой пружины, способной колебаться под действием силы упругости пружины.

Главной моделью для наблюдения колебаний выбран так называемый математический маятник. Математическим маятником называют тело небольших размеров (по сравнению с длиной нити), подвешенное на тонкой нерастяжимой нити, масса которой пренебрежимо мала по сравнению с массой тела. Проще говоря, в своих рассуждениях мы вообще не учитываем нить маятника.


Какими же свойствами должны обладать тела, чтобы мы могли смело могли сказать, что они составляют колебательную систему, и мы можем ее описать теоретически и математически.



Ну а как колебательное движение происходит для нитяного маятника подумайте сами.

Как подсказка – картинка.

Механические колебания это движения, которые точно или приблизительно повторяются через определенные интервалы времени. (например, колебание ветки на дереве, маятника часов, автомобиля на рессорах и так далее )

Колебания бывают свободными и вынужденными .

Колебания, возникающие в системе под действием внутренних сил, называются свободными . Все свободные колебания затухают. (например: колебание струны, после удара )

Колебания, совершаемые телами под действием внешних периодически изменяющихся сил, называются вынужденными (например: колебание металлической заготовки при работе кузнеца молотом ).

Условия возникновения свободных колебаний :

  • При выведении тела из положения равновесия в системе должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • Силы трения в системе должны быть очень малы (т.е. стремиться к нулю).

Е кин → Е р Е кин →…

На примере колебаний тела на нити видим превращение энергии . В 1 положении наблюдаем равновесие колебательной системы. Скорость и, следовательно, кинетическая энергия тела максимальны. При отклонении маятника от положения равновесия он поднимается на высоту h относительно нулевого уровня, следовательно, в точке А маятник обладает потенциальной энергией Е р . При движении к положению равновесия, к точке О, уменьшается высота до нуля, а скорость груза увеличивается, и в точке О вся потенциальная энергия Е р превратится в кинетическую энергию Е кин . В положении равновесия кинетическая энергия имеет максимальное значение, а потенциальная энергия минимальна. После прохождения положения равновесия по инерции происходит превращение кинетической энергии в потенциальную, скорость маятника уменьшается и при максимальном

Общие свойства всех колебательных систем:

    Наличие положения устойчивого равновесия.

    Наличие силы, возвращающей систему в положение равновесия.

Характеристики колебательного движения:

    Амплитуда - наибольшее (по модулю) отклонение тела от положения равновесия.

    Период - промежуток времени, в течение которого тело совершает одно полное колебание.

    Частота - число колебаний в единицу времени.

    Фаза (разность фаз)

Возмущения, распространяющиеся в пространстве, удаляясь от места их возникновения, называются волнами .

Необходимым условием возникновения волны является появление в момент возникновения возмущения препятствующих ему сил, например сил упругости.

Виды волн:

    Продольная - волна, в которой колебания происходят вдоль направления распространения волны

    Поперечная - волна, в которой колебания происходят перпендикулярно направлению их распространения.

Характеристики волны:

    Длина волны - расстояние между ближайшими друг к другу точками, колеблющимися в одинаковых фазах.

    Скорость волны - величина численно равная расстоянию, которое за единицу времени проходит любая точка волны.

Звуковые волны - это продольные упругие волны. Ухо человека воспринимает в виде звука колебания с частотой от 20 Гц до 20000 Гц.

Источник звука - тело, колеблющееся со звуковой частотой.

Приемник звука - тело способное воспринимать звуковые колебания.

Скорость звука - расстояние, на которое распространяется звуковая волна за 1 секунду.

Скорость звука зависит от:

  1. Температуры.

Характеристики звука:

  1. Высота тона

    Амплитуда

    Громкость. Зависит от амплитуды колебаний: чем больше амплитуда колебаний, тем громче звук.

Билет №9. Модели строения газов, жидкостей и твердых тел. Тепловое движение атомов и молекул. Броуновское движение и диффузия. Взаимодействие частиц вещества

Молекулы газа, двигаясь во всех направлениях, почти не притягиваются друг к другу и заполняют весь сосуд. В газах расстояние между молекулами намного больше размеров самих молекул. Поскольку в среднем расстояния между молекулами в десятки раз больше размера молекул, то они слабо притягиваются друг к другу. Поэтому газы не имеют собственной формы и постоянного объема.

Молекулы жидкости не расходятся на большие расстояния, и жидкость в обычных условиях сохраняет свой объем. Молекулы жидкости расположены близко друг к другу. Расстояния между каждыми двумя молекулами меньше размеров молекул, поэтому притяжение между ними становится значительным.

В твердых телах притяжение между молекулами (атомами) еще больше, чем у жидкостей. Поэтому в обычных условиях твердые тела сохраняют свою форму и объем. В твердых телах молекулы (атомы) расположены в определенном порядке. Это лед, соль, металлы и др. Такие тела называются кристаллами. Молекулы или атомы твердых тел колеблются около определенной точки и не могут далеко переместиться от нее. Твердое тело потому сохраняет не только объем, но и форму.

Т.к. со скоростью движения молекул связана его t, то хаотическое движение молекул, из которых состоят тела, называют тепловым движением . Тепловое движение отличается от механического тем, что в нем участвует множество молекул и каждая движется беспорядочно.

Броуновское движение – это беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Открыто и впервые исследовано в 1827 г. английским ботаником Р. Брауном как движение цветочной пыльцы в воде, видимое при сильном увеличении. Броуновское движение не прекращается.

Явление, при котором происходит взаимное проникновение молекул одного вещества между молекулами другого, называют диффузией .

Между молекулами вещества существует взаимное притяжение. Между молекулами вещества в то же время существует отталкивание.

На расстояниях, сравнимых с размерами самих молекул, заметнее проявляется притяжение, а при дальнейшем сближении отталкивание.

Билет № 10. Тепловое равновесие. Температура. Измерение температуры. Связь температуры со скоростью хаотического движения частиц

Две системы находятся в состоянии теплового равновесия, если при контакте через диатермическую перегородку параметры состояния обеих систем не изменяются. Диатермическая перегородка совершенно не препятствует тепловому взаимодействию систем. При тепловом контакте две системы приходят в состояние теплового равновесия.

Температура - физическая величина, примерно характеризующая приходящуюся на одну степень свободы среднюю кинетическую энергию частиц макроскопической системы, находящейся в состоянии термодинамического равновесия.

Температура - физическая величина, характеризующая степень нагрева тела.

Температура измеряется с помощью термометров. Основные единицы измерения температуры - это Цельсий, Фаренгейт и Кельвин

Термометр - устройство, используемое для измерения температуры данного тела путем сравнения с опорными значениями, условно выбранными за точки отсчета и позволяющими установить шкалу измерений. При этом в разных термометрах используются разные связи между температурой и каким-то наблюдаемым свойством прибора, которое можно считать линейно зависящим от температуры.

При увеличении температуры средняя скорость движения частиц увеличивается.

При уменьшении температуры средняя скорость движения частиц уменьшается.

Билет №11. Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Закон сохранения энергии в тепловых процессах

Энергию движения и взаимодействия частиц, из которых состоит тело, называют внутренней энергией тела .

Внутренняя энергия тела не зависит ни от механического движения тела, ни от положения этого тела относительно других тел.

Внутреннюю энергию тела можно изменить двумя способами: совершением механической работы или теплопередачей.

теплопередачей .

При повышении температуры внутренняя энергия тела увеличивается. С понижением температуры внутренняя энергия тела уменьшается. Внутренняя энергия тела увеличивается при совершении над ним работы.

Механическая и внутренняя энергия могут переходить от одного тела к другому.

Этот вывод справедлив для всех тепловых процессов. При теплопередаче, например, тело более нагретое отдает энергию, а тело менее нагретое получает энергию.

При переходе энергии от одного тела к другому или при превращении одного вида энергии в другой энергия сохраняется.

Если между телами происходит теплообмен, то внутренняя энергия всех нагревающихся тел увеличивается настолько, насколько уменьшается внутренняя энергия остывающих тел.

Билет № 12. Виды теплопередачи: теплопроводность, конвекция, излучение. Примеры теплопередачи в природе и технике

Процесс изменения внутренней энергии без совершения работы над телом или самим телом называется теплопередачей .

Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия частиц называется теплопроводностью .

При конвекции энергия переносится самими струями газа или жидкости.

Излучение - процесс передачи теплоты путем лучеиспускания.

Передача энергии излучением отличается от других видов теплопередачи тем, что она может осуществляться в полном вакууме.

Примеры теплопередачи в природе и технике:

    Ветры. Все ветры в атмосфере представляют собой конвекционные потоки огромного масштаба.

Конвекцией объясняются, например, ветры бризы, возникающие на берегах морей. В летние дни суша прогревается солнцем быстрее, чем вода, поэтому и воздух над сушей нагревается больше, чем над водой, его плотность уменьшается и давление становится меньше давления более холодного воздуха над морем. В результате, как в сообщающихся сосудах, холодный воздух по низу с моря перемещается к берегу - дует ветер. Это и есть дневной бриз. Ночью вода охлаждается медленнее, чем суша, и над сушей воздух становится более холодным, чем над водой. Образуется ночной бриз - движение холодного воздуха от суши к морю.

    Тяга. Мы знаем, что без притока свежего воздуха горение топлива невозможно. Если в топку, в печь, в трубу самовара не будет поступать воздух, то горение топлива прекратится. Обычно используют естественный приток воздуха - тягу. Для создания тяги над топкой, например в котельных установках фабрик, заводов, электростанций, устанавливают трубу. При горении топлива воздух в ней нагревается. Значит, давление воздуха, находящегося в топке и трубе, становится меньше давления наружного воздуха. Вследствие разницы давлений холодный воздух поступает в топку, а теплый поднимается вверх - образуется тяга.

Чем выше труба, сооруженная над топкой, тем больше разница давлений наружного воздуха и воздуха в трубе. Поэтому тяга усиливается при увеличении высоты трубы.

    Отопление и охлаждение жилых помещений. Жители стран, расположенных в умеренных и холодных поясах Земли, вынуждены обогревать свое жилище. В странах, расположенных в тропических и субтропических поясах, температура воздуха даже в январе достигает + 20 и +30 о С. Здесь применяют устройства, охлаждающие воздух в помещениях. И нагревание, и охлаждение воздуха в помещениях основано на конвекции.

Охлаждающие устройства целесообразно располагать наверху, ближе к потолку, чтобы осуществлялась естественная конвекция. Ведь холодный воздух имеет плотность большую, чем теплый, и поэтому будет опускаться.

Обогревательные приборы располагают внизу. Во многих современных больших домах устраивают водяное отопление. Циркуляция воды в нем и прогревание воздуха в помещении происходят за счет конвекции.

Если установка для обогревания здания находится в нем самом, то в подвальном этаже устанавливают котел, в котором нагревают воду. По вертикальной трубе, отходящей от котла, горячая вода поднимается в бак, который обычно помещают на чердаке дома. От бака проводят систему распределительных труб, по которым вода проходит в радиаторы, устанавливаемые на всех этажах, она отдает им свое тепло и возвращается в котел, где снова подогревается. Так происходит естественная циркуляция воды - конвекция.